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EFFECT OF ELECTRIC CURRENT ON THE EVOLUTION

OF PLASTIC STRAIN NEAR A CRACK TIP

UDC 539.374:539.4.019.3D. N. Karpinskii and S. V. Sannikov

The effect of direct current on the evolution of plastic strain near the tip of a crack in a crystal
in tension is studied. The plastic strain near the crack tip in the loaded specimen is the result of
the motion of dislocations in the active slip planes of the crystal under the action of shear stresses
caused by external loading and electric current. The Joule heat, Thomson effect, and “electron
wind” (electroplastic effect) are taken into account in calculations. The plastic strain and stress
distributions near the crack tip are determined at different moments of time for a given magnitude
of electric current. The effect of the plastic zone on the stress-intensity factor of the crack is studied.
It is found that the plastic strain is affected largely by the Joule heat released upon passage of the
electric current. A numerical analysis is performed for an α-Fe crystal.

Introduction. It is known that high-density current in a metal substantially decreases its deformation
resistance and increases its plasticity. A large body of research [1, 2] shows that the following factors affect the
plastic-strain evolution in a solid body upon passage of electric current: 1) Joule heating; 2) electroplastic effect
(EPE); 3) pinch effect (action of an inherent magnetic field). Experiments [2] show that the EPE plays the main role
in the plastic-strain evolution, and in this process, the plastic strain has a thermofluctuational character and the
action of current is equivalent to the action of mechanical stresses. We note that the latter statement is disproved
in [3].

The effect of electric current on the evolution of plastic strain near the tip of a crack is of interest, since the
stress-intensity factor (SIF) depends on plastic strain. Maksimov and Svirina [4, 5] studied the effect of the Joule
heat on the growth of a crack with a plastic zone near its tip in a loaded model specimen. However, other effects
of electric current and the microstructure of plastic strain were ignored in these studies.

The aim of the present work is to calculate the plastic strain near the tip of a crack in a crystal and its SIF
under the action of a tensile force and direct electric current. The effect of the Joule heat, EPE, and Thomson
effect (displacement of the heating zone in the direction of the motion of electrons) are taken into account.

1. Formulation of the Problem and Method of the Solution. The authors [6, 7] formulated the
problem of plastic deformation of a body-centered cubic lattice of a crystal near the tip of a crack of length 2l
located in the cleavage plane (010) at an ambient temperature T0. It was assumed that the cracked crystal is loaded
by a tensile stress σ′a(t) applied far from the crack. The plastic strain εj(r, t) occurred due to displacement of the
total dislocations with the Burgers vector (1/2)〈111〉 over two {110} planes of easy slip [(1̄10) for j = 1 and (110)
for j = 2] in the ξj directions for the corresponding planes (Fig. 1).

In addition to [6, 7], we assume that, at a distance from the crack, electric current of density J ′0(t) passes
through the crystal in the normal direction to the crack plane. We also assume that the quantity J ′0(t) increases
monotonically up to a certain value J0 in the time t0 and then it remains constant, and the effect of electric current
on the cracked crystal is confined by the first and second mechanisms. In this case, the equation for the effective
stress σej (r, t) (2.3) in [6] should involve the shear stress σtj(r, t) due to EPE, which is determined by the formula [2]

σtj(r, t) = BeJ(r, t) · ξj/(ben), (1)
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Fig. 1. Crystallographic scheme of a crack and
planes of easy slip in a body-centered cubic lattice
in a crystal in tension.

where Be is a constant, n is the concentration of free electrons in the crystal, and e is the elementary charge.
From [8] follows the expression for the vector of the electric-current density J(r, t) near the crack tip in polar
coordinates Jx(r, t) = J ′0(t)

√
l/(2r) sin (ϕ/2) and Jy(r, t) = J ′0(t)

√
l/(2r) cos (ϕ/2).

We consider the heat released in the plastic zone near the crack tip. For the strain rate ε̇j(r, t) in (2.1) (see
[6]), the temperature field in the upper half-plane at the time t is determined by the formula [9]

T (x, y, t) =

∞∫
0

dy

∞∫
−∞

T0(x, y)G2(x, y, x1, y1, t) dx1

− a
∞∫

0

dτ

∞∫
−∞

Φ(x1, τ)G2(x, y, x1, 0, t− τ) dx1

+

∞∫
0

dτ

∞∫
0

dy1

∞∫
−∞

F (x1, y1, τ)G2(x, y, x1, y1, t− τ) dx1 (2)

as the classical solution of the heat-conduction problem
∂T

∂t
= a∆T + F (x, y, t), −∞ < x <∞, 0 6 y <∞; (3)

∂T (x, 0, t)
∂y

= Φ(x, t); (4)

T (x, y, 0) = T0(x, y), 0 < t <∞. (5)

In (2), G2(x, y;x1, y1, t) = G(x, y;x1, y1, t)+G(x, y;x1,−y1, t), G(x, y;x1, y1, t) = 1/(4πat) exp{−[(x−x1)2+
(y−y1)2]/(4at)}, a = λ/(ρC) is the thermal diffusivity of the crystal, λ is the thermal conductivity, ρ is the density,
and C is the specific heat. In (2) and (3),

F (x, y, t) =
2∑
j=1

[
σej (x, y, t)ε̇j(x, y, t)

]
+ %J2(x, y, t) + LJi(x, y, t)∇iT (x, y, t). (6)

Here % = %0[1 + α(T − T ′0)] is the specific electrical resistance of the crystal, α is the temperature coefficient of
electrical resistance, T ′0 = 273 K, and L is the Thomson’s coefficient [8]. The symmetry of the problem about the
Ox axis implies the boundary condition Φ(x, t) = 0. In the numerical solution of (2), the quantities T (x1, y1, t) and
F (x1, y1, t) are assumed to be constant at each time step in square cells in the Oxy plane, whose centers are the
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nodes of the coordinate grid and whose side is equal to the size of the grid h. In this case, the desired temperature
T (x, y, t) is expressed in terms of the integrals

I1 = I+
1 + I−2 , I2 = I+

2 + I−2 , I±1 =
∫
Ω

G(x, y, x′1,±y′1, t) dx′1 dy′1, I±2 =
∫
Ω

I±3 dx′1 dy
′
1,

I±3 =

t∫
0

G(x, y, x′1,±y′1, t− τ) dτ =
1

4πλ

[
∓ Ei

(
− (x− x′1)2 + (y ∓ y′1)2

4a2t

)]
,

where Ω = h2 is the area of the cell of the calculation grid and Ei(−X) is the integral exponent function. We
replace Ei(−X) by its asymptotic representation Ei(−X) = − lnX − γ for X � 1, where γ = 0.5772. . . is the Euler
constant. Then, we obtain

I±2 = Ψ(u2, v2)−Ψ(u2, v1)−Ψ(u1, v2) + Ψ(u1, v1),

Ψ1 = 4a2t
[
(3− γ)uv − uv ln (u2 + v2)− 3u2 + v2

2
arctan

( v
u

)
− 3v2 + u2

2
arctan

(u
v

)]
,

where u1 = (x − (x1 − h/2))/β, u2 = (x − (x1 + h/2))/β, v1 = (y − (±y1 − h/2))/β, v2 = (y − (±y1 + h/2))/β,
β2 = 4at, and I1 ' h2/(2πat).

Equations (2.1)–(2.8) from [6] with formulas (1) for σtj(r, t) and (2) for T (r, t), form a system from which
εj(r, t), σej (r, t), and T (r, t) are determined for the initial conditions

εj(r, 0) = 0, σ′a(0) = 0, T (r, 0) = T0 (7)

and the boundary conditions

σej (x, 0, t) = 0 (x < 0),
∂T

∂y
(x, 0, t) = 0. (8)

This system was solved numerically with a variable integration step ∆t by the method used in [6]. The time
step was chosen with allowance for the restrictions imposed on the maximum strain rate max |ε̇j(r, t)| 6 0.1 sec−1.
Under this restriction, formula (2.1) in [6], which corresponds to thermal activation of the motion of dislocations,
remains valid.

We assume that the SIF of the crack K(t) can be written in the form [6]

K(t) = Kc(t) +Kp(t), (9)

where K(t) is the SIF of the crack “dressed in a dislocation coat,” i.e., surrounded by dislocations (the effect of
plastic strain on the crack is taken into account), Kc(t) is the SIF of the “naked” crack (the plastic strain near its
tip is ignored) for extension by an external load (mode I), and Kp(t) is the correction to Kc(t) due to the effect of
the “dislocation coat” (plastic strain) near the crack tip. The quantity Kp(t) is determined by the formula [6]

Kp(t) =
2∑
j=1

∫
Dj

K̂p(z, j)∆ρj(z, t) dz, z = x+ iy, (10)

where Dj (j = 1, 2) are the plastic-strain zones near the crack tip that occur due to the motion of dislocations over
the planes of easy slip, ∆ρj(z, t) is the density of effective dislocations in these planes, and K̂p is the complex SIF
of the crack loaded by the stress induced by an effective dislocation located in the upper and lower half-planes. In
this case, we express K̂p = K̂p

I − iK̂
p

II by the formula [6]

Kp

I (z, j)− iKp

II(z, j) =
A√
π

[J1 + iJ2(−1)j ],

where

A =
Gb

2π(1− ν)
, J1 = −π

[ 1√
z

+
3

2
√
z
− z

2(z̄)3/2

]
, J2 = −π

[ 1√
z

+
1

2
√
z̄

+
z

2(z̄)3/2

]
, z̄ = x− iy.

Here K̂p

I is the correction to Kc(t) for extension (mode I) and K̂p

II is the correction to Kc(t) for shear (mode II).
2. Calculation Results and Discussion. Calculations were performed for an α-Fe crystal with the

following constants: ρ = 7800 kg/m3, λ = 78.2 W/(m ·K), C = 460 J/(kg ·K), T0 = 300 K, %0 = 8.6 · 10−8 Ω ·m,
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Fig. 2. Distribution of the effective shear stress near the crack tip over the slip planes (1̄10) (a) and
(110) (b) for direct current of density J0 = 109 A/m2 at t = 1.05 sec.

Fig. 3. Distribution of the shear strain near the crack tip over the slip planes (1̄10) (a) and (110)
(b) for direct current of density J0 = 109 A/m2 at t = 2.25 sec.
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Fig. 4. Time dependences of the SIF of a “naked” crack Kc(t)
and K(t), calculated with allowance for plastic strain near its
tip: the solid curves refer to J0 = 0 and the dashed curves to
J0 = 109 A/m2; curves 1 refer to Kc and curves 2 to K.

L = −22.8 ·10−6 V/K, Be = 10−5 Pa/sec, α = 3.3 · 10−3 K−1 [10], t0 = 0.25 sec, J0 = 109 A/m2, and 2l = 10−3 m.
The remaining constants were borrowed from [6]. The external load σ′a(t) was assumed to reach the upper limit
σa = 5 MPa and then remain constant. In this stage of calculations, we studied the relaxation of the effective shear
stresses σej (r, t), which decelerates the evolution of εj(r, t) up to its cessation.

The plastic-strain evolution in the absence of electric current is studied in detail in [6, 7]. We compare the
plastic-strain evolution in the absence of electric current with that with allowance for the Joule heat, Thomson effect,
and “electron wind” (EPE). The loading stage takes 0.79 and 1.05 sec in the first and second cases, respectively.
For a constant external load and in the absence of electric current, the stress relaxation is completed at the time
t = 1.32 sec (εmax = 0.125%), whereas the electric current terminates the plastic-strain evolution at the moment
t = 2.25 sec.

Figure 2 shows the distribution of the effective shear stress σej (r, t) near the crack tip over the slip planes
(1̄10) (Fig 2a) and (110) (Fig. 2b) for direct electric current at t = 1.05 sec. Figure 3 shows the distribution of
the plastic strain over the slip planes (1̄10) (Fig. 3a) and (110) (Fig. 3b) after stress relaxation is completed at
t = 2.25 sec. An analysis of the effect of the “electron wind” shows that it decelerates stress relaxation in the plastic
zone in comparison with a current-free regime. It follows from the results of calculation of stresses and strains that
the time it takes for the external load to reach a maximum with allowance for the Thomson effect exceeds that
without allowance for this effect.

Figure 4 shows the time dependences of the SIF calculated with and without allowance for electric current.
In all the cases considered, a decrease in the SIF after stress relaxation due to plastic strain near the crack tip is
17.6%. We also note that, in this case of calculation of the Joule heat, the contribution of the first term in (6) is
negligible compared to the contribution of the other two terms.

The present analysis has shown that:
1) during loading of the crystal, the action of direct electric current decreases the stress rate near the crack

tip for a given maximum plastic-strain rate;
2) the plastic-strain evolution is affected mainly by the Joule heat released, the influence of the Thomson

effect is also pronounced, and the “electron wind” leads to asymmetry in the plastic-strain distribution of the in
different slip planes.
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(1991).

889


